Building safe artificial intelligence
Andrew details the most important new techniques in secure, privacy-preserving, and multi-owner governed artificial intelligence. Andrew begins with a sober, up-to-date view of the current state of AI safety, user privacy, and AI governance before introducing some of the ...
Andrew details the most important new techniques in secure, privacy-preserving, and multi-owner governed artificial intelligence. Andrew begins with a sober, up-to-date view of the current state of AI safety, user privacy, and AI governance before introducing some of the fundamental tools of technical AI safety: homomorphic encryption, secure multiparty computation, federated learning, and differential privacy. He concludes with an exciting demo from the OpenMined open source project that illustrates how to train a deep neural network while both the training data and the model are in a safe, encrypted state during the entire process.